Probabilistic co-adaptive brain-computer interfacing.
نویسندگان
چکیده
OBJECTIVE Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface so as to cooperatively achieve a common goal in a task. We seek to mitigate these challenges. APPROACH We introduce a new approach to brain-computer interfacing based on partially observable Markov decision processes (POMDPs). POMDPs provide a principled approach to handling uncertainty and achieving co-adaptation in the following manner: (1) Bayesian inference is used to compute posterior probability distributions ('beliefs') over brain and environment state, and (2) actions are selected based on entire belief distributions in order to maximize total expected reward; by employing methods from reinforcement learning, the POMDP's reward function can be updated over time to allow for co-adaptive behaviour. MAIN RESULTS We illustrate our approach using a simple non-invasive BCI which optimizes the speed-accuracy trade-off for individual subjects based on the signal-to-noise characteristics of their brain signals. We additionally demonstrate that the POMDP BCI can automatically detect changes in the user's control strategy and can co-adaptively switch control strategies on-the-fly to maximize expected reward. SIGNIFICANCE Our results suggest that the framework of POMDPs offers a promising approach for designing BCIs that can handle uncertainty in neural signals and co-adapt with the user on an ongoing basis. The fact that the POMDP BCI maintains a probability distribution over the user's brain state allows a much more powerful form of decision making than traditional BCI approaches, which have typically been based on the output of classifiers or regression techniques. Furthermore, the co-adaptation of the system allows the BCI to make online improvements to its behaviour, adjusting itself automatically to the user's changing circumstances.
منابع مشابه
Co-adaptivity in Unsupervised Adaptive Brain-Computer Interfacing: a Simulation Approach
A Brain-Computer Interface (BCI) allows a user to control a computer by pure brain activity. Due to the nonstationarity of the recorded brain signals, the BCI performance tends to decrease over time. Recently, adaption of the BCI has been proposed as a means to counter non-stationarity and help to stabilize the BCI performance. Since most adaption methods for BCI are analysed in an offline sett...
متن کاملCo-adaptive learning over a countable space
Co-adaptation is a special form of on-line learning where an algorithm A must assist an unknown algorithm B to perform some task. This is a general framework and has applications in recommendation systems, search, education, and much more. Today, the most common use of co-adaptive algorithms is in brain-computer interfacing (BCI), where algorithms help patients gain and maintain control over pr...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملBrain Computer Interfacing: State of the Art, Probabilistic Advances and Future Perspectives
Brain computer interface (BCI) research, carried out in our group, has focused on two aspects. In terms of signal processing, we focused on improving BCI performance by using advanced probabilistic machine learning approaches. On the other hand even the most advance signal processing can only recover information which is actually contained in the data. Hence a second central research direction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neural engineering
دوره 10 6 شماره
صفحات -
تاریخ انتشار 2013